organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Cyclohexyl-3,4,5-trimethoxybenzamide

Aamer Saeed,^a* Muhammad Arshad,^b Rasheed Ahmad Khera^a and Michael Bolte^c

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, ^bChemistry Division, Directorate of Science, PINSTECH, Nilore, Islamabad, Pakistan, and ^cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 11 November 2009; accepted 23 November 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.109; data-to-parameter ratio = 14.3.

The 3,5-methoxy groups in the title compound, $C_{16}H_{23}NO_4$, are almost coplanar with the aromatic ring, whereas the 4methoxy group is bent out of this plane. The three $CH_3 - O -$ C-C torsion angles are -1.51 (18), 0.73 (19) and 75.33 (15)°. The cyclohexane ring adopts a chair conformation. In the crystal, molecules are connected by intermolecular N-H···O hydrogen bonds into chains running along the b axis.

Related literature

For the biological activity of benzanilides, see: Olsson et al. (2002); Lindgren et al. (2001); Calderone et al. (2006). For the use of benzamides in organic synthesis, see: Zhichkin et al. (2007); Beccalli et al. (2005). For related structures, see: Bowes et al. (2003); Chopra & Guru Row (2008); Kashino et al. (1979); Saeed et al. (2008).

Experimental

Crystal data C16H23NO4

 $M_r = 293.35$

Monoclinic, $P2_1/c$ a = 23.4539 (19) Å b = 5.2145 (6) Å c = 12.4559 (10) Å $\beta = 92.886$ (6)° V = 1521.4 (2) Å ³	Z = 4 Mo K α radiation μ = 0.09 mm ⁻¹ T = 173 K 0.37 × 0.37 × 0.33 mm 2823 independent reflections 2360 reflections with $I > 2\sigma(I)$				
Data collection					
Stoe IPDSII two-circle diffractometer Absorption correction: none 6868 measured reflections	2823 independent reflections 2360 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$				
Refinement					
$R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.109$ S = 1.05 2823 reflections	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{Å}^{-3}_{-3}$				

Table 1

198 parameters

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O1^i$	0.916 (19)	2.153 (19)	3.0262 (15)	159.0 (15)

 $\Delta \rho_{\rm min} = -0.22$ e Å⁻³

Symmetry code: (i) x, y + 1, z.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2261).

References

- Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61. 61-68
- Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Crvst. C59. 01-03.
- Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761-767.
- Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54-67.
- Kashino, S., Ito, K. & Haisa, M. (1979). Bull. Chem. Soc. Jpn, 52, 365-369.
- Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267-277.
- Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971-978.
- Saeed, A., Abbas, N., Hussain, S. & Flörke, U. (2008). Acta Cryst. E64, 0773.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415-1418.

Acta Cryst. (2009). E65, o3234 [doi:10.1107/S1600536809050284]

N-Cyclohexyl-3,4,5-trimethoxybenzamide

A. Saeed, M. Arshad, R. A. Khera and M. Bolte

Comment

N-substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson *et al.*, 2002). N-substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes (Lindgren *et al.*, 2001). Heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone *et al.*, 2006). *N*-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin *et al.*, 2007) and *N*-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3*H*quinazoline-4-ones (Beccalli *et al.*, 2005).

The two *m*-methoxy groups the title compound are almost coplanar with the aromatic ring $[CH_3-O-C-C-1.51 (18)^\circ]$ and 0.73 (19)°] whereas the methoxy group in *para* position is bent out of the plane of the aromatic ring $[CH_3-O-C-C-C-C-C-C-C]$ 75.33 (15)°]. The cyclohexyl ring adops a chair conformation. The molecules are connected by N-H···O hydrogen bonds to chains running along the *b* axis.

Experimental

3,4,5-Trimethoxybenzoyl chloride (1 mmol) in CHCl₃ was treated with cyclohexylamine (3.5 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl₃ and washed consecutively with 1 M aq HCl and saturated aq NaHCO₃. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in methanol afforded the title compound (78%) as colourless crystals: Anal. calcd. for C₁₆H₂₃N_O4: C, 65.51; H, 9.70; N, 4.77%; found: C, 65.58; H, 9.65; N, 4.81%.

Refinement

Hydrogen atoms were located in difference syntheses, but those bonded to C were refined at idealized positions using a riding model with C–H = 0.95–1.00 Å) and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. The methyl groups were allowed to rotate but not to tip. The H atom bonded to N was freely refined.

Figures

Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal packing viewed along [001] with intermolecular hydrogen bonds indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

F(000) = 632

 $\theta = 3.4-26.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.37 \times 0.37 \times 0.33 \text{ mm}$

 $D_{\rm x} = 1.281 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 6103 reflections

N-Cyclohexyl-3,4,5-trimethoxybenzamide

Crystal data
C ₁₆ H ₂₃ NO ₄
$M_r = 293.35$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 23.4539 (19) Å
<i>b</i> = 5.2145 (6) Å
<i>c</i> = 12.4559 (10) Å
$\beta = 92.886 \ (6)^{\circ}$
V = 1521.4 (2) Å ³
Z = 4

Data collection

Stoe IPDSII two-circle diffractometer	2360 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.062$
graphite	$\theta_{\text{max}} = 25.6^\circ, \ \theta_{\text{min}} = 3.4^\circ$
ω scans	$h = -28 \rightarrow 23$
6868 measured reflections	$k = -5 \rightarrow 6$
2823 independent reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.0651P)^2 + 0.0617P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
2823 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
198 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: $0.023(3)$

methods Extinction coefficient: 0.023 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.19554 (5)	0.4159 (2)	0.53398 (9)	0.0237 (3)
H1	0.2089 (8)	0.579 (4)	0.5241 (13)	0.034 (4)*
01	0.21507 (4)	-0.01048 (18)	0.53804 (8)	0.0289 (3)
O2	0.42937 (4)	0.00520 (19)	0.45580 (7)	0.0279 (3)
O3	0.43346 (4)	0.36344 (18)	0.30218 (7)	0.0242 (2)
O4	0.34531 (4)	0.66623 (18)	0.25120 (7)	0.0255 (2)
C1	0.22841 (6)	0.2119 (2)	0.51372 (10)	0.0211 (3)
C11	0.28301 (5)	0.2637 (2)	0.45950 (9)	0.0198 (3)
C12	0.32948 (6)	0.1047 (2)	0.48557 (9)	0.0213 (3)
H12	0.3265	-0.0265	0.5379	0.026*
C13	0.38033 (6)	0.1395 (3)	0.43442 (9)	0.0211 (3)
C14	0.38357 (5)	0.3267 (2)	0.35373 (9)	0.0202 (3)
C15	0.33712 (6)	0.4871 (2)	0.32918 (9)	0.0198 (3)
C16	0.28646 (6)	0.4586 (2)	0.38262 (9)	0.0201 (3)
H16	0.2550	0.5693	0.3671	0.024*

C17	0.42929 (6)	-0.1910 (3)	0.53660 (10)	0.0268 (3)
H17A	0.4199	-0.1149	0.6055	0.040*
H17B	0.4671	-0.2707	0.5438	0.040*
H17C	0.4008	-0.3214	0.5157	0.040*
C18	0.44384 (6)	0.1648 (3)	0.22488 (11)	0.0294 (3)
H18A	0.4411	-0.0034	0.2593	0.044*
H18B	0.4821	0.1863	0.1981	0.044*
H18C	0.4154	0.1767	0.1647	0.044*
C19	0.29830 (6)	0.8303 (3)	0.22110 (10)	0.0258 (3)
H19A	0.2659	0.7263	0.1939	0.039*
H19B	0.3095	0.9489	0.1649	0.039*
H19C	0.2873	0.9282	0.2839	0.039*
C21	0.14322 (6)	0.3901 (3)	0.59287 (11)	0.0247 (3)
H21	0.1261	0.2185	0.5755	0.030*
C22	0.15657 (7)	0.4025 (4)	0.71420 (11)	0.0376 (4)
H22A	0.1758	0.5670	0.7323	0.045*
H22B	0.1831	0.2617	0.7357	0.045*
C23	0.10231 (7)	0.3799 (4)	0.77699 (12)	0.0404 (4)
H23A	0.0851	0.2082	0.7649	0.048*
H23B	0.1122	0.3984	0.8548	0.048*
C24	0.05945 (7)	0.5845 (3)	0.74171 (12)	0.0372 (4)
H24A	0.0750	0.7557	0.7612	0.045*
H24B	0.0239	0.5599	0.7800	0.045*
C25	0.04589 (7)	0.5735 (4)	0.62060 (12)	0.0376 (4)
H25A	0.0196	0.7153	0.5994	0.045*
H25B	0.0264	0.4097	0.6023	0.045*
C26	0.10009 (6)	0.5950 (3)	0.55750 (11)	0.0310 (3)
H26A	0.0901	0.5757	0.4797	0.037*
H26B	0.1173	0.7668	0.5692	0.037*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0193 (6)	0.0209 (6)	0.0316 (6)	-0.0013 (5)	0.0099 (4)	0.0005 (4)
01	0.0248 (5)	0.0215 (5)	0.0413 (6)	-0.0004 (4)	0.0099 (4)	0.0034 (4)
O2	0.0198 (5)	0.0365 (6)	0.0277 (5)	0.0075 (4)	0.0047 (4)	0.0091 (4)
O3	0.0189 (5)	0.0278 (5)	0.0266 (5)	-0.0017 (4)	0.0083 (4)	-0.0024 (4)
O4	0.0250 (5)	0.0272 (5)	0.0248 (4)	0.0026 (4)	0.0065 (4)	0.0070 (4)
C1	0.0188 (6)	0.0230 (6)	0.0215 (6)	-0.0005 (5)	0.0011 (5)	-0.0006 (5)
C11	0.0184 (6)	0.0221 (6)	0.0192 (5)	-0.0026 (5)	0.0036 (5)	-0.0048 (5)
C12	0.0218 (7)	0.0225 (6)	0.0197 (6)	-0.0007 (5)	0.0030 (5)	0.0009 (5)
C13	0.0175 (6)	0.0248 (6)	0.0210 (6)	0.0015 (5)	0.0007 (5)	-0.0025 (5)
C14	0.0172 (6)	0.0240 (6)	0.0197 (6)	-0.0025 (5)	0.0039 (5)	-0.0035 (5)
C15	0.0214 (7)	0.0205 (6)	0.0178 (6)	-0.0012 (5)	0.0024 (5)	-0.0011 (4)
C16	0.0176 (6)	0.0212 (6)	0.0215 (6)	0.0018 (5)	0.0009 (5)	-0.0017 (5)
C17	0.0278 (7)	0.0269 (7)	0.0254 (6)	0.0054 (6)	-0.0003 (5)	0.0037 (5)
C18	0.0293 (8)	0.0299 (7)	0.0301 (7)	0.0031 (6)	0.0125 (6)	-0.0023 (6)
C19	0.0287 (7)	0.0255 (7)	0.0233 (6)	0.0040 (6)	0.0007 (5)	0.0033 (5)

C21	0.0190 (7)	0.0246 (7)	0.0312 (7)	-0.0017 (6)	0.0086 (5)	-0.0003 (5)	
C22	0.0250 (8)	0.0572 (10)	0.0312 (8)	0.0053 (7)	0.0064 (6)	0.0073 (7)	
C23	0.0338 (9)	0.0543 (10)	0.0342 (8)	0.0028 (8)	0.0124 (7)	0.0066 (7)	
C24	0.0318 (8)	0.0385 (9)	0.0431 (8)	-0.0008 (7)	0.0184 (7)	-0.0058 (7)	
C25	0.0218 (8)	0.0462 (9)	0.0456 (9)	0.0068 (7)	0.0085 (6)	0.0034 (7)	
C26	0.0238 (8)	0.0352 (8)	0.0346 (7)	0.0050 (6)	0.0073 (6)	0.0057 (6)	
Geometric paran	neters (Å, °)						
N1—C1		1.3451 (17)	C	18—H18B		0.9800	
N1—C21		1.4670 (16)	C	18—H18C		0.9800	
N1—H1		0.916 (19)	C	19—H19A		0.9800	
O1—C1		1.2424 (16)	C	19—H19B		0.9800	
O2—C13		1.3615 (16)	C	19—Н19С		0.9800	
O2—C17		1.4353 (16)	C	21—C26		1.521 (2)	
O3—C14		1.3761 (15)	C	21—C22		1.529 (2)	
O3—C18		1.4432 (16)	C	21—H21		1.0000	
O4—C15		1.3681 (15)	C	22—C23		1.532 (2)	
O4—C19		1.4307 (17)	C	22—H22A		0.9900	
C1-C11		1.5020 (17)	C	22—H22B		0.9900	
C11—C12		1.3945 (19)	C	23—C24		1.516 (2)	
C11—C16		1.4015 (18)	C	23—H23A		0.9900	
C12—C13		1.3920 (18)	C	23—H23B		0.9900	
C12—H12		0.9500	C	24—C25		1.527 (2)	
C13—C14		1.4058 (18)	C	C24—H24A		0.9900	
C14—C15		1.3951 (19)	C	C24—H24B		0.9900	
C15—C16		1.3988 (18)	C	C25—C26		1.5320 (19)	
C16—H16		0.9500	C	25—H25A		0.9900	
C17—H17A		0.9800	C	25—H25B		0.9900	
C17—H17B		0.9800	C	26—H26A		0.9900	
C17—H17C		0.9800	C	26—H26B		0.9900	
C18—H18A		0.9800					
C1—N1—C21		121.53 (11)	Н	19A—C19—H19B		109.5	
C1—N1—H1		120.3 (11)	O	4—C19—H19C		109.5	
C21—N1—H1		117.0 (11)	Н	19A—C19—H19C		109.5	
C13—O2—C17		118.23 (10)	Н	19B—C19—H19C		109.5	
C14—O3—C18		112.80 (10)	Ν	1—C21—C26		110.57 (11)	
C15—O4—C19		117.42 (10)	Ν	1—C21—C22		110.82 (11)	
01—C1—N1		122.58 (12)	C	26—C21—C22		110.89 (12)	
01—C1—C11		120.55 (12)	Ν	1—С21—Н21		108.1	
N1-C1-C11		116.87 (11)	C	26—C21—H21		108.1	
C12-C11-C16		121.26 (11)	C	22—С21—Н21		108.2	
C12—C11—C1		117.54 (11)	C	21—C22—C23		111.55 (13)	
C16—C11—C1		121.16 (11)	C	21—C22—H22A		109.3	
C13—C12—C11		119.56 (11)	C	23—С22—Н22А		109.3	
С13—С12—Н12		120.2	C	21—С22—Н22В		109.3	
С11—С12—Н12		120.2	C	23—С22—Н22В		109.3	
O2—C13—C12		125.32 (11)	H	22А—С22—Н22В		108.0	
O2—C13—C14		114.92 (11)	C	24—C23—C22		110.72 (13)	

C12—C13—C14	119.75 (12)		C24—C23	3—H23A		109.5	
O3—C14—C15	119.15 (11)		C22—C23	3—Н23А		109.5	
O3—C14—C13	120.54 (12)		C24—C23	3—Н23В		109.5	
C15-C14-C13	120.22 (11)		C22—C23	3—Н23В		109.5	
O4—C15—C14	115.40 (11)		Н23А—С	23—H23B		108.1	
O4—C15—C16	124.30 (12)		C23—C24	4—C25		111.23	3 (13)
C14—C15—C16	120.29 (11)		C23—C24	4—H24A		109.4	
C15-C16-C11	118.82 (12)		C25—C24	4—H24A		109.4	
С15—С16—Н16	120.6		C23—C24	4—H24B		109.4	
С11—С16—Н16	120.6		C25—C24	4—H24B		109.4	
O2—C17—H17A	109.5		H24A—C	24—H24B		108.0	
O2—C17—H17B	109.5		C24—C23	5—C26		111.54	(13)
H17A—C17—H17B	109.5		C24—C2	5—H25A		109.3	
O2—C17—H17C	109.5		C26—C23	5—H25A		109.3	
H17A—C17—H17C	109.5		C24—C2	5—H25B		109.3	
H17B—C17—H17C	109.5		C26—C23	5—H25B		109.3	
O3—C18—H18A	109.5		Н25А—С	25—H25B		108.0	
O3—C18—H18B	109.5		C21—C20	6—C25		110.91	(12)
H18A—C18—H18B	109.5		C21—C20	6—H26A		109.5	
O3—C18—H18C	109.5		C25—C20	6—H26A		109.5	
H18A—C18—H18C	109.5		C21—C20	6—H26B		109.5	
H18B—C18—H18C	109.5		C25—C20	6—H26B		109.5	
O4—C19—H19A	109.5		H26A—C	26—H26B		108.0	
O4—C19—H19B	109.5						
C21—N1—C1—O1	4.06 (19)		C19—O4			-1.51	(18)
C21—N1—C1—C11	-175.93 (11))	O3—C14	C15O4		2.05 (17)
O1-C1-C11-C12	-32.62 (17)		C13—C14	4—C15—O4		178.53	3 (11)
N1-C1-C11-C12	147.36 (12)		O3—C14			-178.	18 (11)
O1—C1—C11—C16	145.07 (13)		C13—C14	4—C15—C16		-1.70	(18)
N1-C1-C11-C16	-34.94 (17)		O4—C15			178.64	4 (11)
C16—C11—C12—C13	-0.02 (18)		C14—C13	5—C16—C11		-1.11	(18)
C1-C11-C12-C13	177.67 (11)		C12—C1	l—C16—C15		1.99 (18)
C17—O2—C13—C12	0.73 (19)		C1-C11-			-175.6	62 (11)
C17—O2—C13—C14	-179.46 (11))	C1—N1-	-C21-C26		-150.7	78 (12)
C11—C12—C13—O2	177.00 (12)		C1—N1-	-C21-C22		85.85	(16)
C11—C12—C13—C14	-2.81 (19)		N1-C21-	—C22—C23		179.14	4 (13)
C18—O3—C14—C15	-108.20 (13)	C26—C2	1—C22—C23		55.95	(18)
C18—O3—C14—C13	75.33 (15)		C21—C22	2—C23—C24		-56.00	0 (19)
O2—C13—C14—O3	0.29 (17)		C22—C23	3—C24—C25		55.59	(19)
C12—C13—C14—O3	-179.89 (11))	C23—C24	4—C25—C26		-55.74	4 (19)
O2—C13—C14—C15	-176.15 (11))	N1-C21-	—C26—C25		-178.6	60 (12)
C12-C13-C14-C15	3.68 (19)		C22—C2	1—C26—C25		-55.27	7 (17)
C19—O4—C15—C14	178.25 (11)		C24—C23	5—C26—C21		55.42	(18)
Hydrogen-bond geometry (Å, °)							
D—H···A		D—H	H··	·A	$D \cdots A$		D—H··· A
N1—H1···O1 ⁱ		0.916 (19)	2.1	53 (19)	3.0262 (15)		159.0 (15)
Symmetry codes: (i) x , y +1, z .							

Fig. 1

